
Using	Left-Right	Trees	for	
Hierarchic	Data	Storage

Dale	Chant,	Roland	Seidel,	
Red	Centre	Software	Pty	Ltd
SSS	Conference,	Bristol,	2011	

Version:		20	September	2011



Abstract
• Hierarchies	such	as	grids	(Brand	Image)	or	cubes	(Brand/Statement/Rating)	are	levels	where	no	

levels		are	parallel	,	or,	alternatively,	all	levels	are	mutually	orthogonal	at	the	origin.

• Such	N-dimensional	structures	must	presently	be	stored	as	either	flat	or	as	a	SSS	v2	<hierarchy>

• But	if	flat,	then	many	columns,	and	if	as	hierarchy	of	surveys,	then	many	files.

• For	flat	storage,	the	problem	is	acute	on	large	brand	lists	with	sparse	code	instantiation.	

• 1,000	brands	*	10	attributes		*	10	rating	points	=	20,000	columns,	even	if	most	respondents	skip	
or	respond	for	only	a	few	out	of	the	1,000	brands.	And	if	10	such	questions,	then	200,000	
columns.

• For	hierarchic	storage,	multiple	files	for	simple	grids	and	cubes	is	overkill,	and	conceptualising	as	a	
hierarchy	of	surveys	can	be	counter-intuitive	where	the	case	is	a	single	respondent.

• This	proposal	for	the	storage	of	such	data	as	left-right	trees	(parsable	by	simply	reading	a	string	
from	the	left)	 can	hugely	reduce	the	number	of	required	columns.

• For	fixed	width,	the	number	of	columns	is	determined	by	the	longest	response	in	the	record.	
For	delimited	storage,	each	respondent	would	require	only	as	many	characters	as	needed	to	
record	and	structure	just	that	respondent’s	answer	set.

• The	proposed	storage	could	also	be	used	to	store	any	levels	structure,	but	at	the	expense	of	
needing	to	duplicate	the	upper	paths	for	parallel	(non-orthogonal)	levels.



Left	Right	Trees
Left-right	trees	are	simply	a	way	of	representing	data	hierarchies	as		
strings	which	can	be	parsed	from	left	to	right.

3

2 5

3,58

6,91,74

Assign	a	depth	delimiter	to	each	level	– eg	a,	b,	c,	d

a

b

c

d

The	top-down	tree	node	structure					a		b		c			c					b		c						d		d
Store	the	data	at	each	node	as											a3b2c4c1,7b5c6,9d8d3,5
(This	is	conceptually	similar	to	Surveycraft	loops)



The	SSS	V2	Household	Data
Household	1
Terrace,	East

Household	2
Semi-Det,	South

Household	3
Flat,	East

Person	1 Person	2 Person	1 Person	2 Person	3 Person	1

Fem Male Male MaleFem Fem

21-45 21-45 >65 46-65 <21 21-45

SocSoc WorkBus WorkWork Work Soc Work Work Soc Soc

Bus CarP Train CarP CarDTrain CarD CarD CarD CarP BusBus

Household,	N=3

Person	
N=6

Trip,	N=12

Triple-S	XML	version	2.0.001	(December	2006),	pp	42	ff.



SSS	Data	Storage:	Hierarchy	of	Surveys
Household

01000123
01000232
01000313

Person

0100010122
0100010212
0100020114
0100020223
0100020311
0100030122

Trip

0100010113
0100010112
0100010224
0100010232
0100010224
0100010211
0100020121
0100020121
0100020111
0100020312
0100030123
0100030123

1=Terrace
2=Semi-Det
3=Flat

2=South
3=East

1=Male
2=Female

1=<21
2=21-45
3=46-65
4=>65

1=Social
2=Work
3=Business

1=CarDrv
2=CarPass
3=Bus
4=Train

Red	=	HouseholdLink	ID
Red+Blue =	Person	Link	ID
Black	=	Data



Household	#2	as	5	LR	Trees
Household	2

Semi-Det,	South

Person
1

Person
2

Person
3

Male
1

Male
1

Fem
2

>65
4

46-65
3

<21
1

Work
2

Work
2

Soc
1

Soc
1

CarD
1

CarD
1

CarD
1

CarP
2

b:	Gender:	ab1ab2ab1

b:	Age:								ab4ab3ab1

c:	Mode:	abc1bc1bc1aabc2	

a:	Person:	a1a2a3

b:	Purpose:	ab2b2b1aab1

One	tree	per	level		requires	
3	parallel	b	levels



Household	#2	as	3	LR	Trees
Household	2

Semi-Det,	South

Person
1

Person
2

Person
3

Male
1

Male
1

Fem
2

>65
4

46-65
3

<21
1

Work
2

Work
2

Soc
1

Soc
1

CarD
1

CarD
1

CarD
1

CarP
2

Gender:	a1b1a2b2a3b1

Age:								a1b4a2b3a3b1

Trips:	a1b2c1b2c1b1c1a2a3b1c2	

• Store	upper	level	data	
instead	of	just	the	
nodes.

• 3	parallel	b	levels,	so	
need	at	least	3	trees



Tree	vs	Hierarchy	of	Surveys

• The	three	parallel	levels	mandate	three	storage	instances	for	
both	– either	three	trees,	or	three	survey	files

• Left-right	trees	need	to	duplicate	the	upper	paths	for	
parallel	levels

• But	for	circumstances	where	there	are	no	parallel	levels,	
such	as	Brand/Attribute/Ratings	or	Brand	Image,	left-right	
trees	offer	several	advantages.

• The	primary	advantage	is	dramatically	reduced	storage	
requirements	for	typical	brand-oriented	consumer	surveys



Grids,	Cubes,	As	LR	Trees

Left-right	trees	can	also	be	
used	to	store	grids,	cubes,	or	
any	N-dimensional	data	
structure.	

a1b5a2b3a3b7

a1
b1
c8
b2
c6
b3
c5
a2
b1
c6
b2
c7
b3
c2
a3
b1
c7
b2
c5
b3
c2

BrandX	rated	5

BrandY	rated	3

BrandZ	rated	7
BrandRating

Ra
tin

g



Multi-response
Brand	Image a1b1;2;3;4;5;6;7;8a2b5;6;7;8a3b2;3;5;6

• Note	the	;	delimiter	to	avoid	
confusion	with	European	,	as	
decimal	place

• Any	level	(or	dimension)	can	be	
multi-response,	eg	a1;2b3;4c5;6;7

• For	10	statements	coded	1	to	10,	the	
flat	storage	for	3	brands	(spread	
format)	requires	60	columns

• Can	have	multi-response	at	any	
level,	eg	a1;2b3;4;5



Current	Grid/Cube	Storage
The	implementer	must	choose	between	

• traditional	flat	storage,	or
• SSS	ver	2.0	hierarchic	storage

But	a	typical	brand	tracker	will	have	many	grids,	cubes,	etc	– a	random	
sample	of	3	jobs	gives,	15,	42,	and	37	instances.	The	cost	is	either

• A	large	number	of	columns	(if	flat),	or
• A	large	number	of	files	(if	SSS	hierarchic)

And	with	internet	collection	now	dominant,	the	tendency	to	allow	
responses	for	any	subset	of	brands	for	which	there	is	awareness	(rather	
than	just	the	traditional	main	brand	list)	can	result	in	combinatorial	
explosions	which	impose	a	heavy	burden	on	storage,	RAM	and	CPU.
International	jobs	also	can	have	very	large	brand	lists.

Real-world	examples	follow:



FMCG	(1):	Hierarchy	of	Surveys
SSS	fixed-width	export	from	Confirmit,	180	respondents,	12	brands,	10	grids	and	
5	cubes	requires	15*2	=	30	files	(15	XML,	15	ASC)

ASC Bytes Tree Bytes

Data_0 15,747 B32 15,755

Data_1 14,728 B41 1,181

Data_2 38,523 B42a 492

Data_3 12,549 KC32 11,333

Data_4 9,218 KC41 862

Data_5 55,215 KC42a 537

Data_6 17,031 M32 14,469

Data_7 11,308 M41 975

Data_8 86,031 M42a 657

Data_9 18,321 P32 17,417

Data_10 18,528 P41 1,349

Data_11 68,055 P42a 594

Data_12 11,325 SP32 12,448

Data_13 9,978 SP41 968

Data_14 32,103 SP42a 465

total 418,660 79,502

0

100

200

300

400

500

Hierarchy Tree

K
i
l
o
b
y
t
e
s

A	small	number	of	brands,	and	high	
instantiation,	but	still	five	times	less	space

Comparing	storage	requirements:



FMCG	(2)	Flat:	Brand	Image
323	brands	by	58	statements	(multi-response)	over	69,841	cases

• Spread	format:
Requires	323*58*2	=	37,468	columns
columns	*	cases	=	2,496	meg

• Bit	format	(divide	by	2):
Requires	323*58	=	18,734	columns
columns	*	cases	=	1,248	meg

• Tree	as	Fixed	Width:
Longest	response	=	1150	characters
chars	*	cases	=	76.6	meg

• Tree	as	Delimited:
Sum	of	response	lengths	=	11.33	meg

0

500

1000

1500

2000

2500

3000

Spread Bit Fixed	Tree Delimited	
Tree

M
e
g
a
b
y
t
e
s



FMCG	(3)	Fixed	Width:	Brand	
Statement	Rating

• Bit	format:
Requires	204*4*5	=	4,080	columns
columns	*	cases	=	6,096	k

• Tree	as	Fixed	Width:
Longest	response	=	120	characters
chars	*	cases	=	179.3	k

• Tree	as	Delimited:
Sum	of	response	lengths	=	51.5	k

0

1000

2000

3000

4000

5000

6000

7000

Bit Spread Fixed	Tree Delimited	
Tree

K
i
l
o
b
y
t
e
s

204	brands	by	4	statements		by	5	ratings	over	1,530	cases

• Spread	format:
Requires	204*4	=	816	columns
columns	*	cases	=	1,219	k



Proposed	SSS	Storage:	
Fixed	Width	Single

Brand	Rating:
<tree ident="BRAT">

<position start="3" finish="10"/>
<level ident="Brand" type="single">

<values>
<value code="1">AMEX</value>
<value code="2">Visa</value>

</values>
</level>
<level ident="Rating" type="single">

<values>
<value code="1">1</value>
<value code="2">2</value>
<value code="3">3</value>

</values>
</level>

</tree>

11
Column:  12345678901
Case#1:  xxa1b3a2b1x
Case#2:  xxa2b2    x
Case#3:  xx x
Case#4:  xxa1b1a2b3x

• New	tag	type,	tree
• Different	context	for	the	<level>	tag
• No	href	or	parent,	so	the	levels	are	subordinate



Proposed	SSS	Storage:
Delimited	Single

Brand	Rating:
<tree ident="BRAT">

<position start="3"/>
<level ident="Brand" type="single">

<values>
<value code="1">AMEX</value>
<value code="2">Visa</value>

</values>
</level>
<level ident="Rating" type="single">

<values>
<value code="1">1</value>
<value code="2">2</value>
<value code="3">3</value>

</values>
</level>

</variable>

11111
Column:  12345678901234
Case#1:  x,x,a1b3a2b1,x
Case#2:  x,x,a2b2,x
Case#3:  x,x,,x
Case#4:  x,x,a1b1a2b3,x



Proposed	SSS	Storage:
Fixed	Width	Multi

Brand	Image:
<tree ident="BIM">

<position start="3" finish="12"/>
<level ident="Brand" type="single">

<values>
<value code="1">AMEX</value>
<value code="2">Visa</value>

</values>
</level>
<level ident="Image" type="multiple">

<values>
<value code="1">Cool</value>
<value code="2">Relevant</value>
<value code="3">Popular</value>

</values>
</level>

</variable>

1111
Column:  1234567890123
Case#1:  xxa1b1;3a2b1x
Case#2:  xxa2b1;2;3  x
Case#3:  xx x
Case#4:  xxa1b1a2b1;2x



Proposed	SSS	Storage:
Delimited	Multi

Brand	Image:
<tree ident="BIM">

<position start="3"/>
<level ident="Brand" type="single">

<values>
<value code="1">AMEX</value>
<value code="2">Visa</value>

</values>
</level>
<level ident="Image" type="multiple">

<values>
<value code="1">Cool</value>
<value code="2">Relevant</value>
<value code="3">Popular</value>

</values>
</level>

</tree>

1111111
Column:  1234567890123456
Case#1:  x,x,a1b1;3a2b1,x
Case#2:  x,x,a2b1;2;3,x
Case#3:  x,x,,x
Case#4:  x,x,a1b1a2b1;2,x



Pros	and	Cons
Pro:
• 2	files	only	always	(one	XML,	one	ASC)
• No	need	for	Link	IDs
• No	need	for	<parent>	and	<href>	tags
• No	need	for	a	Definition	XML
• The	number	of	cases	(across	all	data)	remains	constant
• The	base	counts	at	each	level	are	simply	the	number	of	a-nodes,	

b-nodes,	c-nodes	etc
• Data	is	implicitly	ordered,	so	do	not	need	order attribute
• Dramatic	reduction	in	space	requirements	for	grids/cubes	with	large	

codeframes	when	only	a	subset	have	responses,	especially	under	CSV
• The	current	<Hierarchy>	tags	are	unaffected
• A	levels	job	can	store	grids	and	cubes	asked	at	different	levels	as	trees,	

avoiding	levels	within	levels	conundrums
Con:
• Could	cost	more	characters	than	fixed-width	for	node-complete	(all	

codes	at	all	levels	are	instantiated)
• Position	is	recorded	only	for	the	start/end	of	the	tree



Household	Data	Storage
<trees ident="HHTrips">

<level ident="Person" type="single">
<position start="1"/>
<values>

<range from="1" to="10"/>
</values>

</level>
<level ident="Gender" type="single" parent="Person">

<position start="2"/>
<values>

<value code="1">Male</value>
<value code="2">Female</value>

</values>
</level>
<level ident="Age" type="single" parent="Person">

<position start="3"/>
<values>

<value code="1">Under 21</value>
<value code="2">21-45</value>
<value code="3">46-65</value>
<value code="4">Over 65</value>

</values>
</level>
<level ident="Purpose" type="single" parent="Person">

<position start="4"/>
<values>

<value code="1">Social</value>
<value code="2">Work</value>
<value code="3">Business</value>

</values>
</level>
<level ident="Method" type="single" parent="Purpose">

<position start="5"/>
<values>

<value code="1">Car Driver</value>
<value code="2">Car Passenger</value>
<value code="3">Bus</value>
<value code="4">Train</value>

</values>
</level>

</trees>

HH#1:	a1a2,ab2ab1,ab2ab2,ab1b1,abc3bc2
HH#2:	a1a2a3,	ab1ab2ab1,	ab4ab3ab1,	ab2b2b1aab1,	abc1bc1bc1aabc2
HH#3:	a1,ab2,ab2,ab2b2,abc3bc3

• Trees	tag	because	a	set	of	trees	is	
described	

• The	top	level	Person has	no	parent

• The	parent	attribute	allows	parallelism

• If	no	parents	assigned	then	same	as	
<tree>

XML	could	look	like	this:



End


